
Chapter 1 

The Triangular Distribution 

One of our goals in h s  book is to "dig out" suitable substitutes of the beta 
distribution. Only recently (less than 10 years ago) has the triangular 
distribution spenfcalh been investigated by D. Johnson (1 997) as a proy for 
the beta distn'btltion, even though its origins can be traced back to Thomas 
Simpson (1755) (about one century after the discovery of the beta 
distribution in a letter from Sir Isaac Newton to Henry Oldenberg). Very 
recently a "Handbook of Beta Distributions1' edited by Gupta and 
Nadarajah (2004) has appeared (providing and emphasizing in a single 
monograph the attention that the beta distribution has attracted by both 
statistical theoreticians and practitioners over the last century, or so). On the 
other hand it appears that, in our opinion, the triangular distribution has 
been somewhat neglected in the statistical literature (perhaps even due to its 
simplicity whch may discourage research efforts). In this chapter, we shall 
attempt to provide some chronology regarding the history of ths  
distribution, state some of its properties and describe methods for 
estimating its parameters. Although the exposition is certainly not complete, 
we hope that it becomes apparent that the triangular distributions' 
"simplicity" is to a certain extent wrongly perceived and these distributions 
and their extensions are certainly worthy of further investigations. 

1.1 An Historical Overview 

Written records on the triangular distribution seem to originate in the 
middle of the 18-th century when problems of combinatorial probabhty 
were at their peak. A historically inclined reader may wish to consult the 
classical book by F.N. David (1962). One of the earliest mentions of the 
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triangular distributions seems to be in Simpsonl (1755, 1757). Thomas 
Simpson was a colorful personality in Georgan England. His life and 
adventures are described - in somewhat unflattering terms - in Pearson 
(1978) and Hald (1990). (Stigler (1986) gives a more sympathetic assessment 
of Simpson's work and character.) Stigler (1984) and more recently 
Farebrother (1990) provide some additional details on Thomas Simpson in 
particular on the correspondence with Roger Boscovich (171 1-1787) a 
famous Italian astronomer and statistician of Serbian origin. The 
correspondence deals with the method of least absolute deviations 
regression problem whch indirectly relates to triangular distributions (see, 
Farebrother (1990) and Stigler (1984)). 

According to Seal (1949), Simpsons' object was to consider 
mathematically the method 'practised by Astronomers' of taking the mean 
of several observational readings "in order to diminish the errors arising 
from the imperfection of instruments and of the organs of sense". He 
supposes that any one reading errors in excess or defects are symmetrically 
disposed and have assignable upper and lower h t s .  He gves the 
probabhty that the mean of n observations falls between the boundaries 
f z for the following discrete asymmetric triangular probabhty law: 

The solution for the case of a uniform discrete distribution, expressed as a 
gaming problem via a generalized die with k faces, was known by 1710, and 
Simpson's treatment by means of generating functions is the same as 
Abraham de Moivre2 (1667-1754) podhunter (1 865), p.85, Hald (1990)) 
whch caused accusations of plagiarism. What is novel in Simpson's work 
appears in the four pages of additional material published in 1757. Here he 
extends the solution for the triangular case (1.1) to the h t i n g  case h + oo 
in such a way that the range of' variation of an individual error remains 

'Thomas Simpson (1710-1761) a prolific writer of mathematical textbooks and able teacher 

at the Royal Military Acadamy in Wolwich England has made orignal and important 
contributions to actuarial sciences. 
 b bra ham De Moivre (from a Huguenot family) left France in 1685 to seek asylum in 
England. He was a promininent probabilist who was the fust to provide the normal 

approximation to the binomial distribution. 
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within & 1. Seal (1949) points out that this is the first time a continuous 
(symmetric triangular) probability law is introduced. Hence, the continuous 
triangular distribution is certainly amongst the first continzlozls distributions to 
have been noticed by investigators during the 18-th century (when these 
types of problems were popular). For example, one of the first records that 
mentions the continuotls uniform disti-ibution is the famous paper by the 
reverend Thomas Bayes (1763) (only a few years after Simpons' written 
records in 1757). 

The symmetric triangular distribution with probabihty density function 

@df)  

f o r O I x I  i, 
- x), for a 5 x 5 0, (1 4 

elsewhere 

and support [0, I] is depicted in Fig. 1.1A. R. Schmidt (1934) possibly was 
the first to notice that the pdf (1.2) follows as the distribution of the 
arithmetic average of two uniform random variables Ul and U2 on [O,l], i.e. 

Fig. 1.1 A: Standard symmetric triangular distribution 
B: Standard asymmetric triangular distribution with 0 = 114. 

He referred to it as a tine distribution ("tine" is a slender projecting point). We 
were not able to find other Western sources dealing with triangular 
distributions between Sirnpson (1757) and Schmidt (1934) in the 
mainstream statistical literature. Asymmetric standard triangular 
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distributions support [ O , 1 ]  were studied by Ayyangar (1941). The pdf is 
given by 

Substituting 0 = 112 yields the pdf (1.2). A standard asymmetric triangular 
distribution with 8 = 114 is depicted in Fig. 1.1B. The left (8 = 0) and 
right (8 = 1) triangular dstribution (discussed in Rider (1963)) are depicted 
in Figs. 1.2A and 1.2B, respectively. 

Fig. 1.2 A: Left triangular distribution (6' = 0 in (1.4)); 

B: Right triangular distribution (0 = 1 in (1.4)). 

The left and right triangular &stributions with support [0, I] are the only 
two members that the beta and triangular f a d e s  have in common. Recall 
that the two parameter beta density is given by 

where a > 0, p > 0 and I?( ) is the gamma function. Substituting a = 1 
and /3 = 2 in the beta pdf (1.5) yields the left triangular pdf (8 = 0 in (1.4)). 
Substituting a = 2 and ,O = 1 yields the right triangular one (8 = 1 in 
(1.4)). Since 1941 up to the mid-sixties very few publications were devoted 
to the triangular dmribution (Fullman (1953), Ostle et al. (1961) and kder  
(1963)). The product of two identically independent distributed (i.i.d.) 
triangular random variables has been investigated by Donahue (1964). The 
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sum of two independent triangular random variables (i.e., their convolution) 
sharing the same support (but not necessarily with the same mode) has 
- to the best of our knowledge - only been investigated very recently by 

Van Dorp and Kotz (2003b). 
Since 1962 up to 1999, the distribution emerges in numerous papers 

dealing with the Project Evaluation and Review Technique - PERT (see, 
e.g., Clark (1962), Grubbs (1962), MacCrimmon and Ryaveck (1964), 
Moder and Rodgers (1968), VZduva (1971), Wihams (1992), Keefer and 
Verdini (1993), and D. Johnson (1997) amongst others). These papers deal 
with the asymmetric three-parameter triangular density 

I 0l elsewhere 

(with support [a ,b]  and the mode m) which by means of the 
transformation z = (X - a )  / (b - a )  reduces to its standard form (1.4) with 
the support [0, 11, where 0 = (m - a)/(b - a ) .  The parameters of the 
triangular distribution (1.6) are in one-to-one correspondence with a lower 

A 

estimate 2, a most likely estimate %, and an upper estimate b of a 
characteristic under consideration. This leads to an intuitive appeal of the 
triangular distribution (see, e.g., Williams (1992)). In PERT these 
characteristics are the completion times of activities in a project network 
(see, Winston (1993)) whose uncertainties may be modeled by the 
distribution (1.6). N.L. Johnson and Kotz (1999) discuss the asymmetric 
triangular dmribution in the context of YAWL distributions which have 
inter aliaapplications in modeling prices associated with orders placed by 
investors for single securities traded on the New York and American Stock 
Exchanges. 

Recent popularity of the triangular distribution can be attributed to its 
use in Monte Carlo simulation modeling (see, e.g., Vose (1996) and Gamey 
(2002)), discrete system simulation (see, e.g., Banks e t  al. (2000), Altiok and 
Melamed (2001), Kelton et al. (2002)) and its use in standard uncertainty 
analysis software - such as @Risk (developed by the Palisade Corporation) 
or Crystal Ball (developed by Decision Enpeering). These books and 
packages recommend the use of the triangular distribution when the 
underlying Qstribution is unknown, but a minimal value 2, some maximal 

A 

value b and a most likely value 6 are available. In Chapter 4, we shall 
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discuss in some detail the appropriateness of this modeling approach given 
only these estimates. 

1.2 Deriving the CDF utilizing a Geometric Argument 

Instead of deriving the three-parameter cumulative distribution function 
(cdf) of the triangular distribution in the usual fashlon from its pdf (1.6), we 
shall derive it using a geometric argument involving triangles (from whch 
the triangular distribution derives its name). Figure 1.3A depicts the density 
function of a triangular distribution with parameters a, m and b, splitting 
the area underneath it into two triangles with area A1 and A2, respectively. 

b - a  

Fig. 1.3 Deriving of a triangular cdf uthzing areas of conforming triangles. 

6 



The Triangular Distribution Byond Beta 

Since, from basic properties of a pdf it follows that A1 + A2 = 1 we have 
(see Fig. 1.3A) 

H H 2 
( m - a ) - + ( b - m ) - = l @ H = - .  

2 2 b - a  (1.7) 

Hence, the density value at the mode m is not a function of the location of 
m, relative to the boundaries a  and b  (which is not obvious). Note that in 
Figs. 1.1 and 1.2 the density value at the mode equals 2 in all cases (since 
a  = 0 and b  = 1). In addition, from (1.7) we have 

m - a  b - m 
Al = - and A2 = -. 

b  - a  b - a  

In other words, the probability mass to the left (the right) of the mode m ,  
equals the relative distance of the mode m to the lower bound a  (the upper 
bound b) compared to the whole range from a  to b. 

From Fig. 1.3B, Eq. (1.8) and utilizing conformity of the triangles, it 
immediately follows that for a  5 z  5 m : 

z - a  2 m - a  z - a  2 
Pr(Z < z )  = ( -) Al = - (-) 

m - a  b - a  m - a  (1.9) 

and for m 5 z  < b  using Fig. 1.3C and the complement rule 
Pr(Z < z )  = 1 - Pr(Z > z )  : 

Pr(Z < z )  = 1 - 

Hence, the cdf is given by: 

F ( z )  = Pr(Z 5 z )  

Tahng the derivative with respect to z in (1.11) we arrive at the pdf (1.6). 
The reader may wish to graph the cdf (1.11) for reasonable choices of a, m 
andb (a 5 m 5 b).  

The inverse cdf of Z follows from (1.11) as 
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 la, m, b, n) = (1.12) 

a + d y ( m  - a)(b - a ) ,  f o r O < y < w  b-a 

b - J ( l - y ) ( b - m ) ( b - a ) ,  for E S y S 1 .  

Equation (1.12) allows for straightforward sampling from a triangular 
distribution with support [a,  b] uthzing the inverse cdf transformation 
technique and a pseudo-random number generator of a uniform random 
variable on [O, 11 (see, e.g., Vose (1996)). Pseudo random number 
generators have become standard in spreadsheet software and are also 
uthzed in uncertainty analysis packages such as @Risk (developed by the 
Palisade Corporation)and Crystal Ball (developed by Decision 
Engneering), and discrete event simulation software such as Arena 
(developed by Rockwell Software). The quality of the sample from a 
triangular distribution uthzing the inverse cdf transformation technique is 
identical to that obtained using the pseudo-random number generator. 
Banks e t  al. (2000) provide an excellent overview of desirable properties of 
and statistical tests for uniformity and independence of pseudo random 
number generators. 

1.3 Moments of Triangular Distributions 

The k-th moment about zero (which we shall denote by p i )  of a standard 
triangular distribution with support [ O , 1 ]  follows from the pdf (1.4) as 

Here calculations are a bit lengthy but straightforward. The corresponding 
moments of a triangular variable Z with support [a, b] and pdf (1.G) follow 
from (1.13) and the linear transformation Z = (b  - a ) X  + a .  Specifically, 

Substituting k = 1 and k = 2 in (1.13) we arrive at the first and the 
second moments about zero of X: 
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and from the relation pa = V a r ( X )  = E[X2]  - E 2 [ x ]  we have 

Byond Beta 

(1.15) 

Hence, the variance attains its minimum 3/72 at 6 = 1/2 and its maximum 
1/18 at 6 = 0 or 6 = 1. Recall that the variance of a standard uniform 
distribution is much larger and equal to 1/12. 

In a similar manner, uthzing (1.15), substituting k = 3 and k = 4 in 
(1.13) and applying the definitions of the central moments 

one obtains (see, Johnson and Kotz (1999)): 

From the definitions of skewness fi and kurtosis ,& (see, e.g., Stuart and 
Ord (1994)) : 

(the skewness fi retains the sign of the third central moment p3) we 
have 

and 
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(Compare with the kurtosis of a normal or Gaussian distribution, which 
equals 3.) The kurtosis pz (whlch is a combined measure of peakedness and 
heaviness of the t d s  of a distribution) here does not depend on 8. 

Figure 1.4 plots skewness f i  as a function of 8. Observe that 

minimum skewness - fi FZ - 0.566 (which is a negative value) is 
attained for the right triangular distribution in Fig. 1.2B. It is important to 
note here that the left skewed distribution (with a heavier tail towards the 
left) has negative skewness and thus the designation right triangular 
distribution in Fig. 1.2B arises from the location of the mode 19 being at the 
right boundary of the support. S d a r l y ,  the right skewed, left triangular 
distribution in Fig. 1.2A has the maximum positive skewness 

$& FZ 0.566. The skewness of a symmetric triangular distributions 

fi = 0 is obtained from (1.19) by substituting 13 = 1 (see Fig. 1.4). 

Fig. 1.4 Skewness (Eq. (1.19)) as a function of 8. 

Since the measures skewness and kurtosis are invariant under linear 
scale transformation it follows that (1.19) and (1.20), respectively, may be 
used for a triangular random variable Z with support [a, b], pdf (1.6) and 
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parameters a, m and b, uthzing 0 = (m - a) / (b  - a) .  From the linear 
transformation Z = (b - a ) X  + a, (1.1 5) and (1 .l6) we derive 

and 

( b  - a)2 m - a b - m  
Var[Z]  = 

18 b - a  b - a  1. 
Note that from (1.21) it follows that the mean value of Z is the arithmetic 
average of the lower bound a, the mode m and the upper bound b. In our 
opinion, the popularity of the triangular distribution arises from the 
straightforward relationship (1.21) between the parameters and the mean of 
Z, a meaningful interpretation of the parameters a, m and b  as well as 
from the property that the probabdtty mass to the left of the mode m 
equals the relative distance of the mode m to the lower bound a  over the 
whole support [a, b] (i.e. (m - a ) / ( b  - a) ,  see Eq. (1.8)). 

1.4 Maximum Likelihood Method for the Threshold Parameter 8. 

The structure of the standard triangular dstribution (1.4) with support [ O , l ]  
leads to an illuminating procedure for estimating the threshold parameter 8. 
T h s  parameter can be viewed as "dividing" (in the sense that it is related to 
two different analytical expressions appearing in the definition of the pdf 
(1.4)). The derivation of the ML estimator for 8 in (1.4) seems to be quite 
instructive (and is sudar,  but simplified compared to the one presented in 
Johnson and Kotz (1999)). 

Let for a random i.i.d. sample of size s, & = (XI, . . . , X,), the order 
statistics be X ( l )  < Xp) . . . < X(sp  By definition, the hkelihood for X 
with distribution (1.4) is 

where 
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and r is implicitly defined by X(,) 5 8 < X(,+l), X(0) - 0 and 

++I) = 1. 

Theorem 1.1: Let _X = (XI,. . . , X,) be an i.2.d. sample from a triangttlar 
distn'btltion with the pdf (1.4) and sttppo& [O, 11. The ML estimator of8 maximi@ng 
the likelihood (1.23) over the parameter domain 0 5 6 5 1 is 

where 
A 

r = arg max  
r E {I, . . . ,  s} 

M(r) 

and 

Proof: We shall provide a detded proof of this basic theorem. (Another 
version of this theorem wdl be encountered in Chapter 5). To maximize the 
likehhood (1.23), we represent it as 

max L(X;O)=2Ss ,  o l e g  
where 

. . 
M = m a s  H(&; O),  

O < O < l  

H(&; 8 )  is defined by (1.24) and X(,) 5 0 5 X(T+l), with X(0) -- 0, 
X(,+l) 1. Uttltzing (1.29) one can therefore write 
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where 

H(r) = max H(X ; 8), 
X(T) L Q 1 X(,+l) 

r = 0, . . . , S, X(o) r 0 and X(,+l) E 1. The three non-overlapping cases: 
r E ( I , .  . . , s - 1 ), r = 0 and r = s wdl be discussed separately. 

Case r E (1, . . . , s - 1 ) : Here, X(,) 5 0 5 X(T+l). The function 

g(e) = eT( i  - e)s-T (1.32) 

in the denominator of the definition of H ( X  ; 8) (1.24) is proportional to 
an unimodal beta density since r E (1, . . . , s - 1). Thus, 

min g(e> = min (1.33) 
X(T) 5 8 5 ++I) 6 E t X(T), X(T+l) 

and, from (1.24), (1.31) and (1.33), 

Case r = 0 : Here 0 5 8 5 X(1). From (1.24) and (1.31) it follows 
that now 

H(0) = max fi L-?~) . 0 < 6' L X(1) 2 = 1  

Hence H (0) becomes the product 

Case r = s : Here X(,) < 8 < 1. From (1.24) and (1.31) it follows that 
in this case 

H(s) = max 
2=1 

Hence H (s) becomes the product 
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(Compare with (1.35).) From (l.30), (1.34), (1.35) and (1.36) we obtain that 
,. 
M = max 

r E {I, ..., s} 
M(7'>> 

where M ( r )  is defined by (1.27). Hence, the ML estimator of the threshold 
parameter 8 equals the order statistic X ( q ,  where ? is given by (1.26). C] 

,. 
The ML estimator 8 = X(?) given in (1.25)is quite intuitive (if one 

A 

recalls the ML estimator 8 = X(,) of the parameter of a uniform 
distribution on [O,8] for a sample of size s). 

1.4.1 An illustrative example 

We shall ~Uustrate the ML estimation procedure for the parameter 8of  a 
standard triangular distribution (1.4) by means of the following hypothetical 
order statistics 

This data was also used in Johnson and Kotz (1999)3. Consider the matrix 
A = [ai,,] with the entries : 

Table 1.1 summarizes calculations of the matrix A for the order statistics 
given in (1.38). The last row in the table contains the products of the mamix 
entries in the r-th columnwhch are equal to the values of M(r) given by 

3Note: The values in Johnson and Kotz (1999) corresponding to the last three entries in the 
last row of Table 1.1 contain the following typos; 0.00547 should read 0.00543,0.00137 
should replace 0.00364 and0.00029 should be 0.00290. 

14 
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(1.27), r = 1, . . . , S .  Here s = 8. From the last row of Table 1.1 and 
utilizing (1.37), (1.26) and (1.25) we calculate 

Table 1.1 ML estimation for a triangular distribution 

with pdf (1.4) using the data given by (1.38). 

Figure 1.5 displays the function H(_X ; 0) defined by Eq. (1.24) and shows 

that for the data in (1.38) the maximum value = 0.011 of H(_X; 0) over 
A 

0 E [0, 11 is attained at X(3 = 0.30. From (1.28), M = 0.011 and s = 8 
A 

we have L ( 3 ;  0) x 2.79. Also observe that the maximum value H ( r )  (see, 
Eq. (1.31)) of H(& ; 0) over 0 E [Xi,), X(,+l)] is attained at either X(,) or 
Xi,+1) for all r = 0 , .  . . , s. 

The ML estimation of the mode 0 of the triangular pdf (1.4) with 
support [ O , 1 ]  can easily be moddied to the ML estimation of the mode m 
of the triangular pdf (1.6) with support [a, b], using the h e a r  scale 
transformation Z = (b - a ) X  + a; recall that the parameters a and b are 
fixed and the parameter m = (b - a)O + a .  The ML estimator of the 
parameter m of the distribution (1.6) utilizing the order statistics 
v'(l), . . .  ,Z(s))are 
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Fig. 1.5 Graph of H ( X  ; e )  (1.24) for the data in (1.38). (Observe that maxima over 
the sets [X( , ) ,  X(,+l)] are attained here solely at the order statistics, T = 1, . . . , s). 

where, as above, 
A 

r  ( a ,  b) = arg m a x  
r  E {I, . . . ,  s} 

M ( a ,  b, r )  

and 

Compare with equations (1.25), (1.26) and (1.27). 

1.5 Three Parameter Maximum Likelihood Estimation 

This lengthy section involves some non-standard interesting derivations of 
the ML procedure of the three-parameter triangular distributions whlch are 
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closely related to a non-regular case of ML estimation for continuous 
distributions (see, e.g., Cheng and Arnin (1983)). 

Let Z be a random variable with pdf (1.6). For a random sample 
Z = (21,.  . . , 2,) with size s from a triangular distribution with support - 
[a, b] and mode m ,  let theorder statistics be Z( l )  < ZQ) < . . . < Z(,). 
Uulizing (l.6), the likelihood for _Z is by definition 

L ( g ; a , m ,  b) = ( ~ ) ' { f i  b - a  m - a 
i=l i=r+l 

where r is implicitly defined by Z(,) 5 m < Z(,+l), Z(q  5 a and 
Z(,+l) - b. Thus, analogously to (1.28) it follows that for fixed values of a 
and b, satisfying 

we have 

max L ( z ;  a,  m, b) = (2) ' { M (a,  b, ?(a, b))  
a l m i b  b - a  

where ?(a, b) and M (a,  b, r )  are given by (1.42) and (1.43), respectively. 
The ML estimator for the mode m (as a function of a and b) is given by Eq. 
(1.41). Note that, the function F(a, b) is an index function indicating at 
which order statistic the ML estimate of the parameter m is attained as a 
function of the lower bound a and upper bound b (we shall elaborate on 
the index function ?(a, b) below). 

From (1.45) we have that 

mas  [ L O ~ { L ( Z ;  a ,  m, b)}] = 
%a, m, b) 

max 
a < X(1), b > X(s) 

where the set 
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and the function 

G(a ,  b) = Log{M(a, b,F(a, b)) - sLog{b - a) .  (1.48) 

This is an interesting function to be discussed below. Again recall the 
definitions of M ( a ,  b , r )  and that of ?(a, b) in Eqs. (1.42) and (1.43). 
Note that G(a ,  b) is only defined for values of a < Z(l) and b > Z(,) (see 
Eq. (1.47)). To summarize, the three-dimensional optimization problem of 
maximizing the likelihood (1.44) reduces to a two-dunensional case of 
maximizing G(a ,  b) over the region a < Z(1) and b > Z(,). From the 
structure of (1.44), however, we can imrnehately conclude that for all values 
of m such that 

the likelihood L ( 2 ;  a, m, b) -+ 0 (and hence Log{L(_Z; a ,  m ,  b)) + 

- m) when a f Z(l) or b Z(s). Thus, when a modal value can be 
observed in the data (via, for example, a histogram) indicating the validity of 
Eq. (1.49), it would seem that the ML estimators for a and b are not the 
order statistics Z(1) and Z(,), respectively. This is in contrast with the well- 
known fact that the ML estimators of a uniform distribution with support 
[a, b] are given by smallest order statistic X(l) and the largest one X(,) (see, 
e.g., Devore (2004)). 

We shall demonstrate the above fitting characteristic of a triangular 
distribution for civil engineering data consisting of a sample of 85 hauling 
times (Source, AbouRizk (1990)) rather than the hypothetical 8 point 
example given by (1.38) since we are now fitting a three parametric 
distribution instead of a distribution with one parameter 8 given by (1.4). 
Figure 1.6 depicts the empirical pdf for the data in Table 1.2 which seems to 
have a mode in the vicinity of the center of the range 
[z(l), Z(85)] = [3.20,8.60]. Hence, Eq. (1.49) is satisfied. In addition, Fig. 
1.6 depicts the ML fitted triangular distribution with ML estimates of 
parameters 
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Table 1.2 Civil engineering data consisting of 85 hailing times 

(Source: AbouRizk (1990)). 

Fig. 1.6 Empirical pdf for the data in Table 1.2 together with a MI. fitted three-parameter 
A 

triangular distribution 2 = 2.87, 6 = 2(41-44) = 5.80, b = 8.80. 

19 
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Observe that the example data in Table 1.2 actually contains ties, resulting 
in the ML estimator 6 to be attained at either one of the order statistics 
Z(41) through Z(44). Also note that the triangular distribution in Fig. 1.6 
does not quite capture the 'peak' of the empirical pdf in Fig. 1.6. In Chapter 
4 we shall fit a four parameter generahation of the triangular distribution 
that does capture this 'peak' and present a more formal fit analysis using the 
chi-square test (see, e.g., Devore (2004)). 

Figure 1.7 provides the form of the function G(a ,  b) given by (1.48) 
that was maximized to arrive at the ML estimators for the lower and upper 
bounds a and b in (1.50) for the datain Table 1.2. Figure 1.8A (Figure 1.8B) 
depicts a likelihood profile of the function G(a ,  b) displayed in Fig. 1.7 for 
the data in Table 1.2 as function of the parameter a (parameter b) for 
different fixed values of the parameter b (parameter a). Note the behavior 
of G ( a ,  b) for b = 8.6 (for a = 3.2 ) in  Fig. 1.8A (Fig. 1.8B). The ML 

.-. 
estimates 2 = 2.87 and b = 8.80 are indicated by means of a vertical solid 
line in Figs. 1.8A and 1.8B, respectively.Observe the apparent mirror 
symmetry of the graphs in Figs. 1.8A and 1.8B for the data in Table 1.2. A 
further investigation of the function would be appropriate (see Sec. 1.5.1). 
Moreover, note that the profile log-likelihood of the function G ( a ,  b) in 
Fig. 1.8A (Fig. 1.8B) for the value of the largest order statistic Z(,) = 8.6 
(smallest order statistic Z(l) = 3.2) is located below the other two, which 
indicates that Z(,) (that Z(1)) is not the ML estimator for the upper bound b 
(lower bound a). 

Readers interested in more statistical aspects of the three-parameter 
triangular distribution may omit Secs. 1.5.1 and 1.5.2 (with its subsections) 
during an initial reading. 

1.5.1 Some details about the functions G(a, b) and F(a, b)  

Whde the function G(a ,  b) given by (1.48) is continuous over its domain 
a < Z(l) and b > Z(,), the partial derivatives with respect to a or b may not 
be unique at a finite (S - 1) number of points. The source of non- 
differentiabhty at these points is due to the behavior of the index function 
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Bound b 9.00 

Lower Bound a 

Fig. 1.7 The function G(a,  b) p e n  by (1.48) for the data in Table 1.2. 

A 

r ( a ,  b) p e n  by (1.42) as a function of the parameters a  and b. In fact, the 
following properties can be derived for ?(a, b) as a function of b, keeping 
a  < X(l) fixed (recall that ?(a, b) is an index function indicating at whlch 
order statistic the ML estimate of the parameter m is attained); 

(1) The order statistic index ?(a,  b) is decreasing in b  ; 
A 

(2) lim r ( a ,  b) = 1 ; 
b + o o  

A 

(3) lim r ( a , b ) = s ;  
b .1 X(s) 

(4) ?(a,  b) as a function of b  has (s - 1) &continuities 

at the points 
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0.50 1.00 1.50 2.00 2.50 3.00 3.5C 

Lower Bound a 
- b = 9.57 -- b = 10.6 . - - - b = 8.6 

Upper Bound b 
- a = 1.63 - - a = 0.6 . - - - a  =3.2 

Fig. 1.8 Profiles of the function G(a, b) given by (1.48) for the data in Table 1.2: 
Graph A: as a function of the lower bound a; Graph B: as a function of the upper bound b. ,. 

The ML estimates = 2.87; b = 8.80 in (1.50) are indicated by means 
of a vertical dotted line in Figs. 1.8A and 1.8B, respectively. 
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(1.51) 

(Note that the parameter a is fixed.) Sunilar properties can be derived for 
?(a, b) as a function of a,  while keeping b > X(,) fixed. Figure 1.9 gives 
the form of the function ?(a, b) (Eq. (1.42)) for the data in (1.38). The 
function ?(a, b) may be viewed as a bivariate step-function or a winding 
staircase fanetion, which could serve as a useful tool for studying non- 
differentiable bivariate distributions. We are purposely using only a the 
small set of 8 data points in (1.38) in Fig. 1.9 to emphasize the stepwise 
behavior of the function ?(a, b),  which would have been less apparent 
visually when using, for example, the whole data set in Table 1.2. The 
central axis of the "winding staircase1' in Fig. 1.9 is located at a = Z(l) 
= 0.10 and b = Z(,) = 0.80. For a fixed a, the value of fb(a, r )  (1.51) 

identifies the location of the r-th step (in terms of b) of the winding stare 
case. Note that at the central axis (a = X ( l ) ,  b = X(,)) ,  the ( s  - 1)  
discontinuities fb(a, r )  of the index function ?(a, b) converge. 

A 

Discarding the points of discontinuity of the function r ( a ,  b), the 
function G ( a ,  b) becomes differentiable with respect to a and b. From 
(1.48) we obtain: 

a ~ ( a , b , ? ( a , b ) )  s 
-G(a, b) = aa +- 
da M a  ( a  b ) )  b - a 

and 

a - M ( a ,  b,?(a, b ) )  
d b  S 

-G(a, b) = -- 
8b M ( a ( a b ) )  b - a '  

where the partial derivatives of M ( a ,  b, r )  (1.43) are 
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0.80 
.76 

Upper 
Bound b 

-0.86 
Lower Bound a 0.10 

Fig. 1.9 The index function ?(a, b) given by Eq. (1.42) for the data in (1.38). 

a 
- M ( a ,  b, ?(a, b ) )  = M ( a ,  b, ?(a, b ) )  x (1.54) 
da 

and 

a 
- M ( a ,  b, F(a, b ) )  = M (a ,  b, ?(a, b ) )  x 
db 

(1.55) 

A routme BSearch has been developed u t h i n g  (1.51), (1.53) and 
N 

(1.55) to determine b ( a )  for fured a, where 

rV 

b ( a )  = arg m a z  [ ~ ( a ,  b) ] 
b > Z(s)  
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This routine follows a bisection approach (see, e.g., Press et  al. (1989)) and is 
described in the next subsection. Having the routine BSearch to 

N 

determine b ( a )  for fixed a, we next compile a routine ABSearch whlch 

determines 6 and (6) such that 

A 

a = argrnal: [ ~ ( a , 6  ( a ) ) ] .  
a < Z(1) 

The latter routine utilizes (1.52), (1.54) and is also based on a bisection 
approach. (It is described in the next subsection.) The routine ABSearch 
evaluates the maximum of the likelihood, namely the RHS of (1.46), by 
successively utilizing BSearch and yields the following ML estimators : 

A - N 

a, b  = b  ( i i ) ,  iil(ii, b )  = Zd(? i)) and 

N 

where b  ( . ) and ?(a, b )  are defined in (1.56) and (1.42), respectively. For 
ease of implementation, the ML procedure above is summarized in Pseudo 
Pascal in the next subsection. We emphasize that the procedure - although 
straightforward - requires uthzation of a number of variables and careful 
analysis of the consecutive steps and their interconnection. 

1.5.2 ML estimation procedure in pseudo Pascal 

The numerical routines below in Pseudo Pascal require separate algorithms 
to evaluate: 

a a 
-M(ak ,  bk,  r k )  : Eq. (1.54) and -M(ak,  bk ,  r k )  : Eq. (1.55). 
aa db  

Output parameters of routines below are indicated in bold. 
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1.5.2.1 The search mutine Bsearch 

Let G ( a ,  b )  be the function defined by (1.48). For a gven value of the 
parameter a the set of discontinuities in the parameter b of the function 
G(a ,  b )  is a (finite) null-set and one could thus uthze the partial derivatives 
with respect to b (1.53) and (1.55) to determine an ascending search 
direction with respect to G(a ,  b) for b. Define 

B ( a ) =  M a x  
T {I, ..., S - 1 )  

[ f d ( . , r ) ]  . 
where fb  ( a ,  r )  are the discontinuity points given by (1.51). From the 
properties of ?(a, b )  (1.42) mentioned at the beginning of Sec. 1.5.1, it 
follows that for b > B ( a )  (outside the discontinuity locations) : 

and 

Compare with the derivative (1.52). Hence, it follows from (1.58) that 
necessary conditions for a local maximum of G(a ,  b )  (i.e. & ~ ( a ,  b )  = 0 
and 6 G(a ,  b) = 0) cannot be satisfied for b > B ( a ) .  Thus, BSearch 
maximizing G(a ,  b) as a function of b with a fured, can be confined to the 

N 

interval (Z(,), B ( a ) )  only. The routine BSearch below evaluates b (a )  
(1.56), follows a bisection approach (see, e.g., Press et al. (1989)) and 
requires a separate algorithm to evaluate B ( a )  (1.57). 

Step 2 : 
lb+ub 

U;  = B ( a k ) ,  bk = v, 
Mk = M(al;, bk, a ) ,  GI,  = g ~ ( a k ,  bk, ~ k ,  rk) 

Step 3 : I f  Abs(Gk) 2 S then 
~ f G k < ~ t h e n u ; :  =bk  E l s e l ; :  =bk  

Else Stop 
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Step 4 : I f  (u: - 1:) 2 6 Goto Step2 E l s e  Stop 

1.5.2.2 The search mtltine ABSearch 

Let as above G(a ,  b )  be the function defined by (1.48). For a gven value of 
the parameter b the set of discontinuities in the parameter a of the function 
G(a,  b)  is a null-set and one could thus uulize the partial derivatives with 
respect to a (Eqs. (1.52) and (1.54)) to determine an ascending search 
direction with respect to G(a ,  b)  for a. The routine ABSearch starts by 
establishmg an interval [A ,  X ( l ) ]  such that 

where %(A) maximizes G ( A ,  b)  as a function of b  (and is calculated using 
the BSearch routine in Sec. 1.5.1.1). To determine A in (1.59) one may 
utilize (1.52) and (1.54). From 

lim [?(a, b ) ]  = s,  a +  -00  

it follows that for any gven b, there is a sufficiently small a such that 

and 

It thus follows from (1.60) that for any given b  there exists an a sufficiently 
small such that %G(U,  b)  > 0. So far we can only conjecture that an A 
satisfying (1.59) does exist. Numerical analyses support this conjecture. 
Having established the search interval [A ,  X ( l ) ] ,  the routine ABSearch 
follows (analogously to the routine BSearch) a bisection approach (see, 
e.g., Press e t  a/. (1989)) and evaluates the RHS of (1.46) by successively 
utilizing the routine BSearch. 
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ABSearch(_Z , ak,  bk, m k )  

Step1 : 4 = Z( l ) ,  1; = z(1) - (z(s) - z(1)) 

Step2 : BSearch(lt,_Z, bk ,Mk,rk) ,  
Gk = g$q;, bk, Mk, rk) 

Step3 : If GI, < Othen 
U; = l;, 1; = 1; - (Z(,) - Z ( l ) ) ,  Goto Step2. 

Step4 : 
1;+u; ak = - 2 '  

BSearch( ak , _Z , bk, Mk, rk) , 
GI,  = &G( ak, bk, Mk, P C )  

Step5 : If Abs(Gk) > S then 
~f GI,  < 0thenu;  : = akElse1;: = ak 

Else Goto Step 7 
Step6 : If (u; - 1;) 2 S then Goto Step 4 

Else Goto Step 7 .  
Step7 : mrc = Z(,,) 

1.6 Solving for a and b using a Lower and Upper Quantile Estimate 

We shall conclude our discussion of the triangular distribution by providing 
an appealing and smooth method of using quantile estimates to solve for a 
and b. Let Z be a triangular pdf with support [a, b] and mode m with the 
pdf (1.6) and the cdf (1.11). As mentioned above, the recent popularity of 
the triangular distribution could perhaps be attributed to its use in 
uncertainty analysis packages such as @Risk (developed by the Palisade 
corporation). The package @Risk allows definition of a triangular 
distribution (via the function TRIGEN) by specifying a lower quantde up,  a 
most likely value m and an upper quanttle b, such that 

The latter avoids having to specify the lower and upper extremes a and b 
that by definition have a zero likelihood of occurrence (since, the triangular 
density equals zero at the bounds a and b). The software @ h s k  does not 
provide details, however, regarding how the bounds a and bare calculated 
given values for ap,  m and b,. Keefer and Bodily (1983) formulated this 
problem in terms of two quadratic equations from which the unknowns a 
and b had to be solved numerically for the values p = 0.05 and r = 0.95. 
Although the numerical solution of their equations and their generalizations 
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to other values of p and r do not pose any dfficulties, we shall present here 
a slightly simplified version that only requires to solve numerically a single 
equation in the unknown quantity 

m - a  q  = -. 
b - a  

It follows from the cdf (1.11) that the quantity q  equals the probabhty mass 
to the left of the mode m (and also equals the relative distance of the mode 
m to the lower bound a  over the whole support [a ,  b], which is unknown 
here). 

From the definition of a,, ( F ( a p ( a ,  m, b) = p) ,  we have from (1.1 1) 
and (1.62) that 

There is no l r ec t  relation between p and q  here (contrary to the common 
notation when dealing with proportions and/or the binomial distribution), 
except that from (1.61) and (1.62) it follows that 0  < p < q  < 1. Solving 
for the parameter a  from (1.63), yields using (1.62) 

(We use the notation a(q)  instead of a  to emphasize that the lower bound a  
is a function of q, provided the p-th percentile ap and the most likely value 
m are gven.) Analogously to (1.64), we have for m < b, (using b(q) in 
place of b): 

b, - m e  > b, - b r e  
b E b(q) = = b,. (1.65) 

1 - f i  1 - e  

(Here we have from (1.61) and (1.62) that 1 - q  > 1  - r > 0) .  
Substituting a(q)  and b(q) as given by (1.64) and (1.65) into (1.62), we 

arrive at the following bm'c epation 
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Observe the rather "structured" relation between g(q)  and q. Indeed, from 
its structure it immediately follows that 0 5 g(q)  5 1 (as it should be since 
g(q)  represents the probabhty mass to the left of the mode m). In fact, 
setting q  = p  ( q  = r )  in the RHS of (1.67) yields g(p )  = 1 @ ( r )  = 0). In 
addition, the denominator of the RHS (1.67) is "almost" a linear 
combination of the distances of the quanules up and b, from the mode m, 
with the weights that are determined by the quantile probabhty masses p  
and r and the probability mass q to the left of the mode m .  In Chapter 4 
(Sec. 4.3.3.3) we shall show that a general@' version of the Eq. (1.67) has a 
unique solution q* E [p, r ] .  One can solve numerically for q* uthzing 
(1.66), the definition of g(q)  (1.67) and our favorite bisection method (see, 
e.g., Press eta/. (1989)) with the starting interval [p ,  r ] .  After solving for the 
unique solution q* of Eq. (1.66) one could calculate the associated lower and 
upper bounds a(q* ) and b(q*) from Eqs. (1.64) and (1.65), respectively. 

We shall dustrate the above procedure via the example: 

Figure 1.10 depicts the function g(q)  (1.67) for the example above. Note 
that as stated above g ( ~ )  = 1, g ( r )  = 0 in this case and that the unique 
solution q* = 0.2198 is the intersection of the function g(q)  with the 
positive diagonal of the unit square (indicated by a dotted line in Fig. 1.10). 
We calculated the value of q* using the standard root finding algorithm 
GOALSEEK available in Microsoft Excel. Next, from (1.64) and (1.65) 
and uthzing q* = 0.2198, we obtain for the lower and upper bounds 

a(q*)  = 5.464 and b(q*) = 12.452, 

respectively. 
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0.00 0.20 0.40 0.60 0.80 1.00 

-q 
-s(q) -. - q  

Fig. 1.10 The function g(q) given by (1.67) with 

1.7 Concluding Remarks 

We have presented some detds and properties of the triangular distribution 
which possibly have not been sufficiently addressed in the statistical 
literature. For example, to the best of our knowledge, the three-parameter 
ML method for the triangular distribution was first presented in Van Dorp 
and Kotz (2002b). The software BESTFIT developed by the Palisade 
corporation (which has been already available for a number of years now), 
however, does yield exactly the same estimates for the parameters a ,  m and 
b for the data in Table 1.2. Unfortunately, the authors do not provide 
specific details on their method for obtaining these estimates. On the other 
hand, another fitting software package called INPUT ANALYZER 
(developed by Rockwell Software) does not yield the same parameter 
estimates for the data in Table 1.2. (Again, no detds are provided about the 
estimation procedure.) 

A careful reader would have noticed that the method of moments for 
the standard triangular distribution (1.4) with support [ O , 1 ]  has not been 
explicitly discussed in thls chapter due to its obvious simplicity. One may in 
fact directly solve for its the threshold parameter 0 from the expression for 
the mean in (1.15). A three parameter method of moments procedure for a 
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triangular distribution with support [a, b], would require to solve for the 
bounds a and b and the mode m, numerically. For example, for a fured a 

A 

and b one could standardize the data on [0, 11 and next solve for 6' using the 
simple expression for the mean (1.15). Next, one could evaluate the least 
squares error of the second and t k d  central moment of the standardized 
data udzing the straightforward expressions for the variance and third 
moment about the mean as given by (1.16) and (1.17), respectively, and 
minimize this least squares error over the domain a < Z( l ) ,  b > Z(,) 
(slmdar to the maximization of the likelihood function G(a, b) (1.48) 
introduced in Sec. 1.5). We suggest here a minimization procedure since 
there is no guarantee that a solution will be obtained when equating the 
f is t  three sample moments to the theoretical ones. Steps used in the 
outltned methods of moments procedure may be somewhat tedious, but do 
not pose any intrinsic difficulties. 

There are of course many topics and applications of triangular 
distributions which we were not able to cover in thls chapter mainly due to 
space h t a t i o n s .  For completeness we are includmg in the bibliography 
citations of a number of papers not mentioned in the text that could be of 
interest to our dhgent readers. These are appended by a star. 


